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Motion and shape of a viscoelastic drop falling
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The steady shape of a drop of dilute polymer solution falling through a
quiescent viscous Newtonian fluid is considered. Experimentally, we find that an
immiscible drop of 0.16% xanthan gum in 80:20 glycerol/water falling through 9.8 P
polydimethylsiloxane oil may exhibit a stable dimple at its trailing edge. At higher
volumes the dimple extends far into the interior of the drop, and pinches off via
a Rayleigh-type instability, injecting oil droplets into the polymer drop. At even
larger volumes, a toroidal shape develops. We show that the dimpled shape can
be reproduced mathematically with axisymmetric solutions for Stokes flow past a
non-Newtonian drop, using the constitutive equation for a Simple Fluid of Order
Three.

1. Introduction
Among the instabilities that differentiate viscoelastic or non-Newtonian fluid flows

from Newtonian (Navier–Stokes) flows, those involving free surfaces are among the
most striking (see e.g. Larson 1992; Boger & Walters 1993). Specific examples include
filament beads (Goldin et al. 1969), die swell and sharkskin instabilities (Venet &
Vergnes 1997), and the apparent cusp at the trailing end of a rising bubble (Hassager
(1979); Liu, Liao & Joseph 1995). In each of these well-known cases the interface
separates a non-Newtonian fluid, typically a polymer melt or solution, from air.
The cusp-like tail is a particularly surprising steady-state shape, which implies that
stresses in the wake of the bubble are very high. Generally, the motion and shape
of an axisymmetric immiscible liquid drop under gravity has become a benchmark
problem in fluid dynamics, which like the deformation of a drop in a four-roll mill, has
led to many important results in the competition between fluid stresses and surface
tension (Taylor 1934; Stone 1994). For a small enough falling drop, surface tension
effects dominate, and the shape is spherical. As the volume of the drop is increased,
the curvature of the sphere is reduced, and the drop falls faster. The free surface
then deforms from its spherical shape in response to the forces (pressure and internal
stresses) in the flowing fluid.

Of the mathematical approaches which have been taken on the drop problem, most
have focused on the limiting cases of an air bubble or a solid sphere translating
through an infinite non-Newtonian fluid. Analytically, the non-Newtonian fluid is
often modelled by one of the ordered ‘simple fluids’ (Bird, Armstrong & Hassager
1987). An Order Three fluid has been used to solve the flow around a rigid sphere
(Caswell & Schwarz 1962) and to obtain the approximate shape of a rising air bubble
(Tiefenbruck & Leal 1980). The general case of an Order Three fluid drop falling in



236 M. C. Sostarecz and A. Belmonte

another Order Three fluid was considered by Wagner & Slattery (1971). For a more
complete overview and history, see Dairenieh & McHugh (1985).

In this paper we present an experimental study of the steady-state shape of a single
non-Newtonian drop falling through a viscous Newtonian fluid. While this particular
geometry and arrangement has been considered before mathematically (Ramkissoon
1989, 1998), to our knowledge this is the first experimental study. We find that, at a
critical drop volume, the free surface develops an inward dimple at its rear stagnation
point. This transition is similar to the dimple produced by inertial effects in Newtonian
drops (Garner, Mathur & Jenson 1957); however, the deformation we observe is not
due to inertia, confirmed by the spherical shape of the same drop without the polymer.
Our observations provide another example of a non-Newtonian effect at negligible
Reynolds number which mimics an inertial instability (Shaqfeh 1996). At high enough
volumes this indentation becomes unstable to an interior pinch-off, leading to many
small droplets of the solvent which fill the large drop. These shapes are remarkably
similar to some of the transients seen by Leal and coworkers in Newtonian fluids (Koh
& Leal 1990). We perform a formal expansion in the non-dimensional relaxation time
(Deborah number De) and surface tension (capillary number Ca), which we treat
as an ad hoc model for our observations, as we will truncate at third order in the
small quantities. This approach allows us to qualitatively reproduce our experimental
findings.

2. Experimental observations
2.1. Apparatus and fluids

Our experimental setup consists of a clear rectangular cell filled with 9.8 P
polydimethylsiloxane (PDMS) oil. The cell is a Plexiglas box, 42 cm in height, with
cross-sectional area of 5.7 cm × 6.3 cm. A drop of polymer solution is introduced at
the top of the cell as a roughly spherical globule, either injected from a precision
syringe for the smaller volumes (§ 2.3 and § 2.4), or poured from a beaker for the
larger volumes (§ 2.5); the details of this initial shape do not affect the final drop
shape. The drop is allowed to fall approximately 33 cm before being observed (at
which time it has reached steady state). The drops range in size from 0.01 ml to 1.5 ml,
for which d/D � 0.2, where d is the horizontal diameter of the drop, and D is the
narrower width of the cell. The shape and speed of the drop are recorded with a
video camera (COHU 4912) and a digital image processing system (NIH Image on a
Macintosh G3, with a Scion AG-5 frame grabber). All experimental data were taken
at room temperature, which was controlled at 25 ◦C.

The drop phase is a polymer solution of 0.16% xanthan gum† by weight in 80:20
glycerol/water by volume (Smolka & Belmonte 2000). It has density ρ̃ = 1.27 g cm−3,
whereas the exterior oil has ρ = 0.98 g cm−3. A surface tension between the two
fluids of Γ = 25 dyn cm−1 was measured by a pendant drop technique, using the
procedure outlined by Ambwani & Fort (1979). Xanthan gum is a high-molecular-
weight (≈ 2 × 106), water-soluble, anionic polysaccharide produced by the bacterium
Xanthomonas Campestris (Whitcomb & Macosko 1978; Nussinovitch 1997). The
xanthan gum was mixed at low heat into an 80:20 (by volume) glycerol and distilled
deionized water solution, using an industrial electric mixer (Eastern mixers, Model
No. 8A-RS) at rates between 30 and 120 r.p.m. After one day of mixing the fluids

† Vanzan NF, provided by R.T. Vanderbilt Co. (Norwalk, CT).
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Figure 1. The steady shear stress vs. the applied shear rate, for the solution of 0.16%
xanthan gum in 80:20 glycerol/water at 25 ◦C. The line shows the Newtonian scaling σ ∼ γ̇ .
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Figure 2. The apparent shear viscosity of the solution of 0.16% xanthan gum in 80:20
glycerol/water at 25 ◦C. An approximation of the relaxation time λ is obtained from the shear
rate at which η̃(γ̇ ) thins below η̃0 (dashed line). The solid line corresponds to a theoretical fit
with (3.5) as discussed in § 3.2.

were homogeneous. The solutions were set aside for two weeks before being used in
experiments.

2.2. Rheology of the interior fluid

Rheological measurements of the xanthan gum solution were performed with a
temperature-controlled Rheometrics RFS-III rheometer, in strain-controlled mode.
The fluid was tested in a standard Couette cell at T = 25 ◦C, with an inner cylinder
of diameter 32 mm and height 33 mm, and with a gap of 1 mm.

We measure the steady shear stress σ as a function of applied shear rate γ̇ , as
shown in figure 1. We also plot the apparent shear viscosity η̃(γ̇ ) ≡ σ/γ̇ in figure 2.
This indicates that the fluid is shear thinning, with a zero shear viscosity η̃0 � 500 P. In
the shear-thinning region, we find a power law dependence η̃(γ̇ ) ∼ γ̇ β , with β = −0.63
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(a)                                                                     (b)

Figure 3. Two 0.73ml drops falling through 9.8 P polydimethylsiloxane (PDMS) oil:
(a) 0.16% xanthan gum/80:20 glycerol/water; (b) 80:20 glycerol/water.

(not shown). One estimate of the relaxation time λ is to take the inverse of the shear
rate where η̃(γ̇ ) thins below η̃0. Using this, we find λ� 40 s.

2.3. Transition to a dimpled drop

The steady shape and velocity of a polymer drop falling through a quiescent viscous
Newtonian fluid is determined by a balance of the net gravitational force, external
viscous stresses, pressure, surface tension, and internal viscoelastic stresses. The relative
importance of these various effects can be characterized by several non-dimensional
parameters. Taking the equivalent radius R =(3Vol/4π)1/3 and terminal velocity U∞
of the drop as the characteristic length and velocity scales, respectively, we define the
Reynolds and capillary numbers of the external fluid as

Re =
ρRU∞

η
, Ca =

ηU∞

Γ
,

and the Deborah number of the interior as

De =
λU0

R
.

Here U0 is a typical interior flow speed, which we choose a priori to be U0 = U∞/(κ+1),
where κ = η̃0/η (this choice will be explained in § 3.4). For our experiments, κ = 50.

When a xanthan drop is allowed to fall through a viscous oil, an inward cusp is
observed, as shown in figure 3(a). In fact, the shape bears some resemblance to the
well-known cusped air bubble rising through a polymer solution (Hassager 1979;
Liu et al. 1995); here the cusp-like extension of the surface is also drawn into the
non-Newtonian phase, as one would expect from applying an inversion mapping to
the cusped air bubble, putting the non-Newtonian fluid inside, and the Newtonian
fluid outside. The drop falls at a terminal velocity of 1.1 cm s−1, which means that the
exterior flow has a Reynolds number of Re � 6 × 10−2 (using the volume equivalent
radius of R =0.56 cm). Using the relaxation time λ� 40 s from the rheology of the
interior phase, we find a Deborah number of De � 1.5. We therefore attribute the
dimpled shape to the elasticity of the interior fluid.

A dimpled drop shape similar to figure 3(a) occurs due to inertial effects (Garner
et al. 1957; Wellek, Agrawal & Skelland 1966), and in fact the mathematics of
the perturbations due to elastic effects presented below are similar to the inclusion
of inertial effects (Taylor & Acrivos 1964). In the opposite (viscous) limit, a striking
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(a) (b) (c) (d ) (e)

Figure 4. Steady-state shapes of xanthan drops falling through 9.8 P oil. The drop volumes
shown are (a) 0.01 ml, (b) 0.12 ml, (c) 0.21ml, (d) 0.35ml, and (e) 0.52 ml.

(a) (b) (c) (d ) (e)

Figure 5. Calculated steady-state axisymmetric shapes of Order Three drops falling through
Stokes fluid. The drop volumes shown are (a) 0.01 ml, (b) 0.12ml, (c) 0.21 ml, (d) 0.35ml, and
(e) 0.52ml. These calculated shapes correspond to the theoretical prediction given in (3.25).

instability to a growing dimple has been seen for a Newtonian drop falling through an
ambient Newtonian fluid; this large and transient distortion results from either a finite
initial perturbation or the absence of surface tension, and has been observed both
experimentally (Koh & Leal 1990) and numerically (Koh & Leal 1989; Pozrikidis
1990). In contrast, our dimpled drops are steady in shape, occurring without any
strong initial perturbation and in the presence of significant surface tension.

To confirm that our observations can be attributed to elastic effects alone, we
observed that a falling viscous Newtonian drop of the same volume (0.73 ml) has
a spherical shape, as shown in figure 3(b); the fluid used is the pure solvent, 80:20
glycerol/water, without any added polymer. While the terminal velocity in this case
(1.6 cm s−1) is not far from that of the polymer drop, the shape is quite different. The
lower terminal velocity of the slightly heavier and effectively more viscous polymer
drop cannot be fully accounted for by the dependence of the classical terminal velocity
on density and viscosity (Happel & Brenner 1965), which would predict only a small
decrease (less than 5%). The rest of the observed 30% decrease must be due to either
shape or elastic effects.

To observe the onset of this instability, we varied the drop size. For small enough
volumes, the xanthan drop falls slowly and is spherical, as shown in figure 4(a)
(0.01 ml). For volumes from 0.05 to 0.24 ml, the drop has an oblate spheroidal shape.
At a critical volume of 0.25 ml, a dimple is observed at the rear of the drop (the
critical volume is between (c) and (d) in figure 4). In § 3, we model the drop phase
as a Simple Fluid of Order Three to mathematically obtain the drop’s shape. These
results are shown in figure 5.

The changes in the shape of the drop and the flow of the non-Newtonian fluid
inside will also affect the drag on the drop as it falls, and therefore its terminal
velocity. In figure 6 we plot the terminal velocity of the polymer drop, measured
after the drop has fallen through 30 cm of the viscous fluid. The velocity is shown as
a function of the equivalent radius. The two theoretical predictions shown with the
data are discussed in § 3.10.
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Figure 6. Terminal velocity vs. equivalent radius. The dashed and solid lines correspond to
the theoretical predictions given in (3.14) and (3.26) respectively.

2.4. Interior filament and droplet generation

For drop volumes above about 1 ml, the dimple becomes unstable. The exterior fluid
is pulled down into the drop, and resembles a falling pendant drop followed by a
filament (figure 7a). However, in this case the pendant oil drop is lighter than the
surrounding polymer fluid. The filament becomes unstable to breakup inside the
polymer drop (figure 7b), which bears a striking resemblance to the classic Rayleigh
instability (Shi, Brenner & Nagel 1994; Eggers 1997).

After the pinch-off of the pendant drop, the internal cusp that remains becomes
unstable to a ‘tip-streaming’ instability (Taylor 1934; Milliken & Leal 1991), and the
xanthan drop begins to fill with smaller oil drops. This indicates that the stresses
generated by the non-Newtonian fluid inside the drop have overcome the surface
tension forces, resulting in the injection of fluid into the interior, similar to the
transition seen by Jeong & Moffatt (1992) in viscous Newtonian fluids.

2.5. Torus formation

Here a slightly different experimental setup was used to view some larger drop
sizes, ranging between 5.0 ml and 15.0 ml. Due to the size of the drops and the time
required to reach a steady-state shape, we used a larger rectangular cell, with cross-
section 7.5 cm × 9.0 cm and height 120 cm, filled with 4.9 P PDMS oil. The drops were
viewed approximately 80 cm down the cell (at which time the drops were in steady
state).

For these larger volumes, the filament of oil pulled into the polymer drop becomes
wider and more stable. The filament extends down to the leading edge of the drop,
resulting in the formation of a new dimple. Eventually the front and back dimples
coalesce, making a toroidal drop as shown in figure 7(c). This process often results in
the pinch-off of the pendant oil drop, which is pushed off to the side.

There are several examples of toroidal bubbles and drops in the literature. For
instance, as two immiscible Newtonian drops fall through a viscous Newtonian oil,
the leading drop will, under some conditions, form a torus due to its interactions with
the second drop (Kushner, Rother & Davis 2001). Toroidal bubbles have also been
observed in cavitation processes near walls (see e.g. Benjamin & Ellis 1966). Walters
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(a)                                                   (b)                                                    (c)

Figure 7. Shape transitions for larger polymer drops. Volumes shown are (a) 1.4 ml;
(b) 1.5ml; (c) 7.0ml (torus).

& Davidson (1963) were able to create a toroidal bubble by rapidly opening and
closing an air jet at the bottom of a water tank. Remarkably, some dolphins at play
will form similar toroidal bubbles by blowing air into a vortex they produce with
their tail (Marten et al. 1996).

Toroidal shapes have also been seen experimentally for a single falling drop in
Newtonian fluids when the two fluids are miscible (Kojima, Hinch & Acrivos 1984;
Machu et al. 2001) or have very low surface tension (Baumann et al. 1992). In the
experiments of Baumann et al., viscous effects alone overpowered the surface tension
forces (at high Ca) resulting in the toroidal shape. Without any force working against
viscous dissipation, the torus they observed ‘rapidly expanded’ until breaking into
smaller drops. In contrast to all of the above experiments, the toroidal polymer drops
studied here appear to be stable, and are not observed to expand or contract over a
distance of 30 cm (at which point they reach the bottom of the cell).

3. Mathematical description
To mathematically describe the elastic effects we observe in a falling polymer

drop, we take a perturbative approach to the drop shape, using the axisymmetric
Hadamard–Rybczynski solution as our base flow. There have been many similar
mathematical studies for a variety of cases, as discussed above. Our approach can
be viewed as a special case of Wagner & Slattery (1971), in that the Rivlin–Eriksen
constitutive equation they use is formally equivalent to the one used here. Using
the retarded motion expansion for the dependence of the stress tensor on velocity
gradients (Bird et al. 1987), we can reproduce the shape transitions shown in figure 4.
In so doing, we represent the exterior flow with the Stokes equation, i.e. Re = 0. This
is an approximation, as it is well-known that setting Re = 0 is inconsistent with any
small Re in the Navier–Stokes equation (Batchelor 1967).

3.1. Statement of the mathematical problem

To calculate the effects of non-Newtonian stresses on the shape of a falling drop,
we assume first that the flow remains axisymmetric, and we treat only the steady
(time-independent) case. We assume that inertial effects are negligible for both fluids.
The exterior fluid is Newtonian and incompressible, and thus is described by the
steady Stokes equation:

∇ · u = 0,

∇p = ∇ · τ + ρg,

τ = 2η D,


 (3.1)
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where D= (∇u + ∇uT )/2 is the symmetric part of the velocity gradient tensor (the
deformation tensor), τ the extra stress tensor, u the velocity field, p the pressure, g
the gravitational acceleration, η the viscosity, and ρ the density.

The definition of a non-Newtonian fluid is simply a fluid which does not obey the
Navier–Stokes equation. The interior fluid is modelled as a Simple Fluid of Order
Three, which is an expansion of the functional dependence of the stress tensor on the
deformation gradient tensor and its proper tensor derivatives; this equation is exact
as De → 0 (Bird et al. 1987). Denoting the interior-fluid variables with tildes, the
governing equations are

∇ · ũ = 0,

∇p̃ = ∇ · τ̃ + ρ̃g,

}
(3.2)

where the constitutive equation for τ̃ is given by

τ̃ = 2b1 D̃+2b2d̂ D̃+4b11 D̃ · D̃+2b3d̂
2 D̃+4b12( D̃ · d̂ D̃+d̂ D̃ · D̃)+8b1:11( D̃ : D̃) D̃ (3.3)

and the operator d̂ is the upper convected tensor derivative (Bird et al. 1987)

d̂(·) =

(
∂

∂t
+ ũ · ∇

)
(·) − ∇ũT (·) − (·)∇ũ. (3.4)

The six parameters b1, b2, b11, b3, b12, b1:11 are the retarded motion constants, which
are related to the rheological constants of the fluid, as discussed in § 3.2.

The steady-state boundary conditions at the interface require that the normal
velocity components are zero and the tangential components are continuous. Also
at the interface, we have that the tangential components of the stresses are equal
while the difference in the normal components of the stress is equal to the surface
tension of the interface Γ times its curvature (Batchelor 1967): −p + n · τ · n =
−p̃ + n · τ̃ · n + Γ (1/R1 + 1/R2), where n is the unit vector normal to the droplet
surface, and R1, R2 are the principle radii of curvature. We assume the drop is falling
in an infinite bath with the origin of our coordinate system fixed at the drop’s centre
of mass. At infinity, the flow is assumed to be free streaming with velocity U∞ in
the vertical direction. Finally, it makes sense physically to require finite flow speeds
everywhere.

3.2. Rheology of an Order Three fluid

We recall here some standard results for the rheology of a Simple Fluid of Order
Three (Bird et al. 1987). Inserting the constitutive equation (3.3) into a simple shear
flow in Cartesian coordinates [u]x = γ̇ y, we obtain the shear stress σ = [τ ]xy as

σ = b1γ̇ + b2

∂γ̇

∂t
+ b3

∂2γ̇

∂t2
− 2(b12 − b1:11)γ̇

3.

For steady shear, this becomes σ = b1γ̇ − 2(b12 − b1:11)γ̇
3 from which the apparent

viscosity is defined to be

η̃(γ̇ ) ≡ σ (γ̇ )

γ̇
= b1 − 2(b12 − b1:11)γ̇

2. (3.5)

Thus, the zero shear viscosity η̃0 = b1, and for shear thinning we must have b12 >b1:11.
Fitting the experimentally observed apparent viscosity with (3.5) to capture the onset
of shear thinning, we find that η̃0 = 500 P and b12 −b1:11 = 105 P s2 (see figure 2). Unlike
what was seen experimentally, the apparent viscosity in this model does not have
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Parameter: η̃0 λ B11 B3 B12 B1:11

Value: 500 P 40 s 0.41 1.20 0.44 0.32

Table 1. Values of parameters used in Third Order fluid equation.

a power law dependence at high shear rates. We have therefore only qualitatively
included shear-thinning effects (note that an Order Two fluid does not shear thin).

Computing the normal stress coefficients, it is found that the first normal stress
coefficient is b2 = −Ψ1,0/2, and the second normal stress coefficient is b11 = Ψ2,0. From
this, we define our relaxation time to be λ= −b2/b1 = Ψ1,0/2η̃0; we use λ= 40 s, as
obtained in § 2.2.

3.3. Elastic perturbations at nonzero Deborah number

We consider a formal perturbation expansion of the flow variables in Deborah
number De, taken to second order, similar to the small-Re study by Taylor & Acrivos
(1964). Although we non-dimensionalize all lengths by R, we choose different velocity
and stress scales in the exterior and interior: in the exterior our scales are U∞ and
ηU∞/R, while in the interior we choose U0 and η̃0U0/R. These scales are related since
U0 = U∞/(κ + 1) and η̃0 = κη. Under these choices the constitutive equation and the
normal stress boundary condition become

τ̃ = 2 D̃ − De(2d̂ D̃ + 4B11 D̃ · D̃)

+ De2(2B3d̂
2 D̃ + 4B12( D̃ · d̂ D̃ + d̂ D̃ · D̃) + 8B1:11( D̃ : D̃) D̃) (3.6)

and

n ·
(

τ − κ

κ + 1
τ̃

)
· n − p + p̃ =

1

Ca

(
1

R1

+
1

R2

)
. (3.7)

Here we have modified the constitutive parameters following the standard
normalization (Bird et al. 1987): B11 = −b11/λη̃0, B3 = b3/λ

2η̃0, B12 = b12/λ
2η̃0, and

B1:11 = b1:11/λ
2η̃0. From the analysis presented in this paper, the values of these

constants which best fit the rheology (§ 3.2), the shape transition (§ 3.8) and the
terminal velocity (§ 3.10) are given in table 1.

The velocity and pressure fields of the drop interior are expanded as ũ = ũ0+Deũ1+
De2ũ2 and p̃ = p̃0 +Dep̃1 +De2p̃2. This of course means that the deformation tensor

is also written D̃= D̃0 + De D̃1 + De2 D̃2. Note that the operator d̂(·) is also being
perturbed, via its dependence on velocity, so that at each order

d̂i(·) =

(
∂

∂t
+ ũi · ∇

)
(·) − ∇ũT

i (·) − (·)∇ũi .

Substituting these perturbations into (3.6) we obtain

τ̃ = τ̃ 0 + De τ̃ 1 + De2 τ̃ 2 + O(De3) (3.8)

where τ̃ 0 = 2 D̃0 is the zeroth-order Newtonian contribution, and

τ̃ 1 = 2 D̃1 − 2d̂0 D̃0 − 4B11 D̃0 · D̃0, (3.9)

τ̃ 2 = 2 D̃2 − 2(d̂0 D̃1 + d̂1 D̃0) − 4B11( D̃0 · D̃1 + D̃1 · D̃0) + 2B3d̂
2
0 D̃0

+ 4B12(d̂0 D̃0 · D̃0 + D̃0 · d̂0 D̃0) + 8B1:11( D̃0 : D̃0) D̃0. (3.10)
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The elastic perturbations in the interior will also affect the exterior Newtonian flow,
so we must similarly expand u, p, and τ in powers of De. At each order the stress
tensor is τ i = (∇ui + ∇uT

i ).
Since both interior and exterior flows are incompressible and axisymmetric, we

have the standard streamfunctions in spherical coordinates (Happel & Brenner 1965).
The expansion of the velocity fields leads to

ψ = ψ0 + De ψ1 + De2 ψ2,

ψ̃ = ψ̃0 + De ψ̃1 + De2 ψ̃2,

where at each order i

ui =

(
1

r2 sin θ

∂ψi

∂θ
, − 1

r sin θ

∂ψi

∂r

)

and

ũi =

(
1

r2 sin θ

∂ψ̃ i

∂θ
, − 1

r sin θ

∂ψ̃ i

∂r

)
.

3.4. Perturbative solutions

We approach this problem by following the standard technique of perturbing the flow
to a certain order, obtaining the solution for the flow that order, and then evaluating
the forces on the boundary. The boundary shape is then adjusted in order to balance
the forces, after which a domain perturbation (Joseph & Fosdick 1972) is done to
recalculate the flow for this new shape (a higher-order correction).

By substituting the De expansions into the equations of motion, we find that both
interior and exterior flows are driven Stokes flows at O(1):

∇p0 = �u0 +
ρgR2

ηU∞
, ∇p̃0 = �ũ0 +

ρ̃gR2

η̃0U0

.

To solve these equations, we substitute the streamfunctions for u0, ũ0 and eliminate
pressure to obtain

E4ψ0 = 0, E4ψ̃0 = 0,

where the operator E4 ≡ E2E2 is defined by

E2 =
∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
.

Solutions of E4Ψ = 0 are of the form (Happel & Brenner 1965)

Ψ =

∞∑
n=1

(
Anr

−n + Bnr
2−n + Cnr

n+1 + Dnr
n+3

)
Qn(µ) (3.11)

where µ = cos θ , and the Gegenbauer functions are

Qn(µ) =

∫ µ

−1

Pn(x) dx

with Pn the Legendre polynomial of degree n.
For the flow to remain finite, we have immediately in the exterior that Dn =0 for all

n, and Cn = 0 for n � 2; in the interior An = Bn = 0 for all n. Applying the interfacial
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boundary conditions at r(θ) = 1, we obtain the classic creeping flow solutions obtained
by Hadamard (1911) and Rybczynski (1911):

ψ0 =
1

4

(
2r2 − 3κ + 2

κ + 1
r +

κ

κ + 1

1

r

)
sin2 θ,

ψ̃0 = − 1
4
(r2 − r4) sin2 θ.

The interior streamfunction differs by a factor of (κ + 1) compared with Taylor &
Acrivos (1964), due to our choice of non-dimensionalization. To compensate for the
large viscosity difference, this choice was made so that both the flow at infinity and
through the origin are O(1).

Using these streamfunctions the velocity fields u0 and ũ0 can be calculated, from
which the pressure fields p0 and p̃0 can also be determined. The overall forces on the
drop (non-dimensionalized by ηRU∞) are due to buoyancy and drag:

F = FB + FD =
4πR2(ρ − ρ̃)g

3ηU∞
+ 2π

(
3κ + 2

κ + 1

)
. (3.12)

Here we have utilized the Payne–Pell Theorem to calculate the drag force:

FD = 8π lim
r→∞

ψ∞ − ψ(r, θ)

r sin2 θ
, (3.13)

where ψ∞ =(r2 sin2 θ)/2 is the streamfunction for free streaming flow (Payne &
Pell 1960). In steady state the forces balance (F = 0 in (3.12)), which defines the
Hadamard–Rybczynski terminal velocity:

U∞ = UHR ≡
(

2κ + 2

9κ + 6

)
(ρ̃ − ρ)gR2

η
. (3.14)

To this point, we have not utilized the normal stress boundary condition (3.7).
Evaluating the stress at the steady-state terminal velocity yields

δp =
1

Ca

(
1

R1

+
1

R2

)
,

where δp is the ambient pressure jump. When R1 = R2 = 1, we recover the standard
Laplace pressure jump in non-dimensional form. In other words, a perfect sphere
is a solution to the free boundary problem of creeping flow past a Stokes drop for
non-zero Ca (Taylor & Acrivos 1964).

At all higher orders in De, the perturbations to the exterior flow are undriven
Stokes flows: E4ψi = 0 for each i. However, both the shape of the drop boundary and
the value of the boundary conditions will be different at each order.

For the interior flow at O(De) we have

∇p̃1 = �ũ1 + f 1(ũ0),

f 1(ũ0) = −∇ · (d̂0 D̃0 + B11 D̃0 · D̃0).

Eliminating the pressure field in the usual way, we find

E4ψ̃1 = r sin θ[∇ × f 1(ũ0)] · δφ = 0.
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Applying the boundary conditions, we obtain

ψ1 =
(9 − 3B11)κ

20(κ + 1)2

(
1

r2
− 1

)
sin2 θ cos θ,

ψ̃1 =
(9 − 3B11)κ

20(κ + 1)
(r3 − r5) sin2 θ cos θ.

Using the full exterior streamfunction ψ =ψ0 + De ψ1 in (3.13), we find that
there is no extra drag force contributed at O(De). Thus the terminal velocity remains
unchanged from the Hadamard–Rybczynski value, as was first seen for the viscoelastic
drag on a rigid sphere by Leslie (1961), and later for a drop (Wagner & Slattery
1971).

3.5. Deformation of the free boundary

For Ca = 0, which corresponds to infinite surface tension, there will be no deformation.
Likewise, because we are neglecting inertia, if De is zero there will be nothing to
perturb the shape from spherical. Thus all perturbation terms must involve both De

and Ca (Bird et al. 1987).
The non-dimensional perturbed boundary of the drop is given by the radius

r = 1 + ζ (µ), where µ = cos θ . For small deformations (max|ζ | 	 1), Landau &
Lifshitz (1959) showed that the total curvature can be approximated for the
axisymmetric case as

1

R1

+
1

R2

= 2 − 2ζ − d

dµ

(
(1 − µ2)

dζ

dµ

)
. (3.15)

The normal stress boundary condition (3.7) then becomes

n ·
(

τ − κ

κ + 1
τ̃

)
· n − p + p̃ =

1

Ca

(
2 − 2ζ − d

dµ

(
(1 − µ2)

dζ

dµ

))
(3.16)

which allows the boundary to be expanded in De and Ca. Here we will assume that
De and Ca are each of the order of a small parameter ε. The function ζ has to satisfy
the two conditions ∫ 1

−1

ζ dµ = 0,

∫ 1

−1

ζ µ dµ = 0. (3.17)

These equations are respectively linearizations of the conditions that the volume of
the drop must remain constant and that its centre of mass must remain at the origin.
At the terminal velocity of the drop (3.14) we have

δp − 4α2DeP2(µ) =
1

Ca

(
2 − 2ζ − d

dµ

(
(1 − µ2)

dζ

dµ

))
, (3.18)

where

α2 =
(56 + 74κ − 17B11 − 23κB11)κ

80(κ + 1)2
.

Solving with (3.17), we find that the boundary deformation is

ζ = −α2DeCa P2(cos θ), (3.19)

which is of the same form as the inertial correction found by Taylor & Acrivos (1964).

3.6. Flow around the perturbed shape

We will now perform a domain perturbation (Joseph & Fosdick 1972) to determine
the effect of the deformed drop on the flow fields. We perturb the exterior and interior
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flows as

u = u(0) + DeCau(1), ũ = ũ(0) + DeCaũ(1),

where u(0) and ũ(0) are the previously obtained flow fields around the sphere. Interested
only in terms up to O(ε2), the new correction terms, u(1) and ũ(1), will each satisfy
undriven Stokes equations. Thus we have

E4ψ (1) = 0, E4ψ̃ (1) = 0.

Rather than solving the boundary conditions on the surface of the drop r(θ) = 1 +
ζ (cos θ), we Taylor expand about the sphere r(θ) = 1. Our interfacial boundary
conditions (which will be evaluated at r = 1) become

u(1)
r − α2P2(cos θ)

∂u0,r

∂r
− 3α2 cos θ sin θu0,θ = 0,

ũ(1)
r − α2P2(cos θ)

∂ũ0,r

∂r
− 3α2 cos θ sin θũ0,θ = 0,

u
(1)
θ − α2P2(cos θ)

∂u0,θ

∂r
+ 3α2 cos θ sin θu0,r

=
1

κ + 1

(
ũ

(1)
θ − α2P2(cos θ)

∂ũ0,θ

∂r
+ 3α2 cos θ sin θũ0,r

)
,

τ
(1)
rθ − α2P2(cos θ)

∂τ0,rθ

∂r
+ 3α2 cos θ sin θ(τ0,rr − τ0,θθ )

=
κ

κ + 1

(
τ̃

(1)
rθ − α2P2(cos θ)

∂τ̃0,rθ

∂r
+ 3α2 cos θ sin θ(τ̃0,rr − τ̃0,θθ )

)
.

Solving we obtain

ψ (1) =
α2

10(κ + 1)2

(
(3κ2 − κ + 8)r − 3κ2 − 3κ + 6

r

)
Q1(µ)

− 3α2

35(κ + 1)

(
21κ + 18

r
− 21κ + 4

r3

)
Q3(µ),

ψ̃ (1) =
α2

5(κ + 1)
((4 − 2κ)r4 + (3κ − 3)r2)Q1(µ) +

6α2

35
(5r6 − 12r4)Q3(µ).

As will be discussed in § 3.8, this flow will further perturb the boundary. Thus,
we will need the τ (1) and τ̃ (1) contributions to the normal stress boundary condition
(3.16):

n ·
(

τ (1) − κ

κ + 1
τ̃ (1)

)
· n = τ (1)

rr − α2P2(cos θ)
∂τ0,rr

∂r
− 6α2 cos θ sin θ τ0,rθ

− κ

κ + 1

(
τ̃ (1)
rr − α2P2(cos θ)

∂τ̃0,rr

∂r
− 6α2 cos θ sin θ τ̃0,rθ

)
. (3.20)

3.7. De2 correction to the flow

Since we have assumed that De and Ca are of the same order, and our perturbation
of the boundary is O(DeCa), we must also include terms of O(De2). We have in the
interior

∇p̃2 = �ũ2 + f 2(ũ0, ũ1)

f 2(ũ0, ũ1) = −∇ · ((d̂0 D̃1 + d̂1 D̃0) + B11( D̃0 · D̃1 + D̃1 · D̃0))

+ ∇ · (B3d̂
2
0 D̃0 + B12(d̂0 D̃0 · D̃0 + D̃0 · d̂0 D̃0) + B1:11( D̃0 : D̃0) D̃0).
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Thus in the interior we solve

E4ψ̃2 = r sin θ[∇ × f 2(ũ0, ũ1)] · δφ = −140a r2 sin2 θ, (3.21)

where

a = − 9κ

100(κ + 1)
+

3κ

25(κ + 1)
B11 − 3

35
B3 − 63

140
B12 +

63

140
B1:11.

Noting that we solve these equations while evaluating the boundary conditions on a
spherical drop, we have

ψ2 =
2a + c1

κ + 1

(
r − 1

r

)
Q1(µ) +

c3

κ + 1

(
1

r
− 1

r3

)
Q3(µ),

ψ̃2 = (a(r6 − r2) + c1(r
4 − r2))Q1(µ) + c3(r

6 − r4)Q3(µ),

where

c1 =
9κ

50(κ + 1)
+

3κ(κ − 2)

25(κ + 1)2
B11 − κ − 12

70(κ + 1)
B3 − 9(κ − 1)

10(κ + 1)
B12 +

9(κ − 1)

10(κ + 1)
B1:11,

c3 = − 531κ2

175(κ + 1)2
+

321κ2

175(κ + 1)2
B11 +

57κ

35(κ + 1)
B3 − 24κ

35(κ + 1)
B12 +

9κ

35(κ + 1)
B1:11.

3.8. Drag and higher-order deformation

The drag force on the drop, as perturbed according to the above analysis, can be
calculated using (3.13) and the exterior streamfunction ψ = ψ0 + Deψ1 + DeCaψ (1) +
De2ψ2 as

FD

2π
= d0,0 + d1,1DeCa + d2,0De2

=
3κ + 2

κ + 1
+

3κ2 − κ + 8

5(κ + 1)2
α2DeCa

+
κ

10(κ + 1)2

(
12κ

5(κ + 1)
(3B11 − B2

11) − 26

7
B3 − 36B12 + 36B1:11

)
De2. (3.22)

Note that, as expected, the contribution from the shape change increases the drag
(using the parameters in table 1), whereas the higher-order elastic effects decrease the
drag, in agreement with Ramkissoon (1989).

From the balance of buoyancy and drag we have

U∞ =
2(ρ̃ − ρ)gR2

3η(d0,0 + d1,1DeCa + d2,0De2)
. (3.23)

Inserting this terminal velocity and (3.20) into the the normal stress condition (3.16),
we have

δp − 4α2DeP2(µ) − 10β3DeCaP3(µ) + 10α3De2P3(µ)

=
1

Ca

(
2 − 2ζ − d

dµ

(
(1 − µ2)

dζ

dµ

))
, (3.24)

where

β3 =
3(11κ + 10)

70(κ + 1)
α2
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Figure 8. Theoretical prediction of the drop shape using the measured volume (1.4ml) and
velocity (1.6 cm s−1) of the drop in figure 7(a). Note the unphysical cross-over of the boundary
at the trailing edge of the falling drop.

and

α3 =
κ

350(κ + 1)2

(
2937κ + 3468κ2

10(κ + 1)
− 1621κ + 1942κ2

10(κ + 1)
B11 +

107κ + 131κ2

5(κ + 1)
B2

11

− 437 + 494κ

2
B3 + (71 + 83κ)B12 − 27 + 36κ

2
B1:11

)
.

Solving with (3.17) for ζ , we find that the axisymmetric boundary is given by

r(θ) = 1 − α2CaDe P2(cos θ) − β3Ca2De P3(cos θ) + α3CaDe2 P3(cos θ). (3.25)

Using the measured terminal velocity of the drops in figure 4 to calculate De and Ca,
we obtain a theoretical prediction of the shapes using the parameter values listed in
table 1, as shown in figure 5.

3.9. The model beyond its limits

Since we are making an expansion, ideally we would like the parameters De and Ca

to be small. Thus it is intriguing that we were able to qualitatively capture the shapes
of the drops in figure 4, although the drop of volume 0.5 ml has De � 1 and Ca � 0.5.
If we push our model further by computing the shape of a drop nearly three times this
size, our theory predicts that the boundary will self-intersect at the trailing edge of the
drop (see figure 8). However, as unphysical as this result appears, it may correspond
to the experimental observation of internal pinch-off at this location (figure 7a).

Here there is a surprising correlation with ocean surface waves. From an exact
solution, Crapper (1957) was able to determine the greatest height of capillary waves.
When his solution is pushed further, the surface also self-intersects, which was used to
predict the entrainment of air bubbles in the wave troughs (Longuet-Higgins 1988).

3.10. Discussion of terminal velocity

Originally we non-dimensionalized the external velocity field by the drop’s terminal
velocity U∞. However the drop’s terminal velocity is an easily measured quantity,
and by studying U∞ it is possible to compare experiments with different fluids or
drop sizes. First, by solving (3.23) for velocity in the limit of zero De, we get the
Hadamard–Rybczynski velocity (3.14). Combining this with (3.23), we can obtain the
departure of U∞ from UHR due to non-Newtonian effects:

U∞ =
d0,0

d0,0 + d1,1DeCa + d2,0De2
UHR. (3.26)

Since our control parameters, De and Ca, are also functions of U∞, we must solve
this equation implicitly to find the terminal velocity of the drop. Using the parameters
in table 1, we plot U∞ vs. R in figure 6 along with the experimental data.



250 M. C. Sostarecz and A. Belmonte

4. Conclusions
In this paper we have presented the first experimental observation of a non-

Newtonian drop falling through a viscous Newtonian fluid, using an elastic polymer
solution (xanthan gum) as the drop phase. As the volume of the drop is increased,
the primary transition of the free boundary from its spherical shape is due to non-
Newtonian effects; inertial effects remain negligible. We observe the transition to
a dimpled shape, similar to the well-known inertial instability to a dimpled drop
(Wellek et al. 1966). Our analysis uses a perturbation expansion about the classic
Hadamard–Rybczynski solution. Using the constitutive equation for a Simple Fluid
of Order Three, we have successfully reproduced the main aspects of the steady-state
shape and velocity of the drop while also fitting the gross features of the shear
rheology.

Beyond the validity of this expansion, we have experimentally observed the shape
of larger polymer drops. Two new instabilities have been observed as the volume
is further increased. One is the extension of the interior cusp into a pendant drop
followed by a filament, which becomes unstable via a Rayleigh-type instability to
many smaller droplets. For even larger volumes, stable toroidal drops are observed,
the result of the elastic stress in the polymer solution overcoming surface tension.

In viscous flows, steady free-surface shapes such as the cusp-like tail of a rising
air bubble (Hassager 1979; Liu et al. 1995) or the dimpled drop observed here,
seem to require non-Newtonian effects. However, drops with large and transient tails
or dimples are seen in viscous Newtonian fluids, as a result of either finite initial
perturbations or the absence of surface tension (Koh & Leal 1989, 1990; Pozrikidis
1990). This similarity between the transient Newtonian and the steady non-Newtonian
shapes may be indicative of a deeper mathematical connection between these free-
boundary problems.

We would like to thank T. Podgorski for valuable discussions and critical reading
of the manuscript, J. Hammack and D. M. Henderson for pointing out the connection
to air entrainment in capillary waves, and R. Geist for experimental assistance. This
work was supported by the A. P. Sloan Foundation and National Science Foundation
(CAREER Award DMR-0094167).
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